Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Virol ; 13(1): 90384, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38616854

RESUMO

Hepatitis B virus (HBV) infection poses a global health concern without a definitive cure; however, antiviral medications can effectively suppress viral replication. This study delves into the intricate interplay between lipid metabolism and HBV replication, implicating molecular mechanisms such as the stearoyl coenzyme A desaturase 1 autophagy pathway, SAC1-like phosphatidylinositol phosphatase, and galectin-9 mediated selective autophagy of viral core proteins in regulating HBV replication. Within lipid droplets, perilipin 2 (PLIN2) emerges as a pivotal guardian, with its overexpression protecting against autophagy and downregulation stimulating triglyceride catabolism through the autophagy pathway. This editorial discusses the correlation between hepatic steatosis and HBV replication, emphasizing the role of PLIN2 in this process. The study underscores the multifaceted roles of lipid metabolism, autophagy, and perilipins in HBV replication, shedding light on potential therapeutic avenues.

2.
J Med Virol ; 96(4): e29597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587211

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic has resulted in the loss of millions of lives, although a majority of those infected have managed to survive. Consequently, a set of outcomes, identified as long COVID, is now emerging. While the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the respiratory system, the impact of COVID-19 extends to various body parts, including the bone. This study aims to investigate the effects of acute SARS-CoV-2 infection on osteoclastogenesis, utilizing both ancestral and Omicron viral strains. Monocyte-derived macrophages, which serve as precursors to osteoclasts, were exposed to both viral variants. However, the infection proved abortive, even though ACE2 receptor expression increased postinfection, with no significant impact on cellular viability and redox balance. Both SARS-CoV-2 strains heightened osteoclast formation in a dose-dependent manner, as well as CD51/61 expression and bone resorptive ability. Notably, SARS-CoV-2 induced early pro-inflammatory M1 macrophage polarization, shifting toward an M2-like profile. Osteoclastogenesis-related genes (RANK, NFATc1, DC-STAMP, MMP9) were upregulated, and surprisingly, SARS-CoV-2 variants promoted RANKL-independent osteoclast formation. This thorough investigation illuminates the intricate interplay between SARS-CoV-2 and osteoclast precursors, suggesting potential implications for bone homeostasis and opening new avenues for therapeutic exploration in COVID-19.


Assuntos
COVID-19 , Osteoclastos , Humanos , Osteoclastos/metabolismo , Síndrome Pós-COVID-19 Aguda , COVID-19/metabolismo , SARS-CoV-2 , Diferenciação Celular
3.
World J Hepatol ; 16(1): 1-11, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38313242

RESUMO

In coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily targets the respiratory system, but evidence suggests extrapulmonary organ involvement, notably in the liver. Viral RNA has been detected in hepatic tissues, and in situ hybridization revealed virions in blood vessels and endothelial cells. Electron microscopy confirmed viral particles in hepatocytes, emphasizing the need for understanding hepatotropism and direct cytopathic effects in COVID-19-related liver injury. Various factors contribute to liver injury, including direct cytotoxicity, vascular changes, inflammatory responses, immune reactions from COVID-19 and vaccinations, and drug-induced liver injury. Although a typical hepatitis presentation is not widely documented, elevated liver biochemical markers are common in hospitalized COVID-19 patients, primarily showing a hepatocellular pattern of elevation. Long-term studies suggest progressive cholestasis may affect 20% of patients with chronic liver disease post-SARS-CoV-2 infection. The molecular mechanisms underlying SARS-CoV-2 infection in the liver and the resulting liver damage are complex. This "Editorial" highlights the expression of the Angiotensin-converting enzyme-2 receptor in liver cells, the role of inflammatory responses, the impact of hypoxia, the involvement of the liver's vascular system, the infection of bile duct epithelial cells, the activation of hepatic stellate cells, and the contribution of monocyte-derived macrophages. It also mentions that pre-existing liver conditions can worsen the outcomes of COVID-19. Understanding the interaction of SARS-CoV-2 with the liver is still evolving, and further research is required.

4.
Geroscience ; 46(3): 2915-2932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191833

RESUMO

Obesity has emerged as a significant public health challenge. With the ongoing increase in life expectancy, the prevalence of obesity is steadily growing, particularly among older age demographics. The extension of life expectancy frequently results in additional years of vulnerability to chronic health issues associated with obesity in the elderly.The concept of SARS-CoV-2 directly infecting adipose tissue stems from the fact that both adipocytes and stromal vascular fraction cells express ACE2, the primary receptor facilitating SARS-CoV-2 entry. It is noteworthy that adipose tissue demonstrates ACE2 expression levels similar to those found in the lungs within the same individual. Additionally, ACE2 expression in the adipose tissue of obese individuals surpasses that in non-obese counterparts. Viral attachment to ACE2 has the potential to disturb the equilibrium of renin-angiotensin system homeostasis, leading to an exacerbated inflammatory response.Consequently, adipose tissue has been investigated as a potential site for active SARS-CoV-2 infection, suggesting its plausible role in virus persistence and contribution to both acute and long-term consequences associated with COVID-19.This review is dedicated to presenting current evidence concerning the presence of SARS-CoV-2 in the adipose tissue of elderly individuals infected with the virus. Both obesity and aging are circumstances that contribute to severe health challenges, heightening the risk of disease and mortality. We will particularly focus on examining the mechanisms implicated in the long-term consequences, with the intention of providing insights into potential strategies for mitigating the aftermath of the disease.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , Peptidil Dipeptidase A , Enzima de Conversão de Angiotensina 2 , Envelhecimento , Obesidade , Tecido Adiposo
6.
World J Hepatol ; 15(11): 1170-1173, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38075008

RESUMO

In the management of the growing population of hepatitis C virus-infected patients, a significant clinical challenge exists in determining the most effective methods for assessing liver impairment. The prognosis and treatment of chronic hepatitis C depend, in part, on the evaluation of histological activity, specifically cell necrosis and inflammation, and the extent of liver fibrosis. These parameters are traditionally obtained through a liver biopsy. However, liver biopsy presents both invasiveness and potential sampling errors, primarily due to inadequate biopsy size. To circumvent these issues, several non-invasive markers have been proposed as alternatives for diagnosing liver damage. Different imaging techniques and blood parameters as single markers or combined with clinical information are included. This Editorial discusses the identification of a set of six distinctive lipid metabolites in every fibrosis grade that appear to show a pronounced propensity to create clusters among patients who share the same fibrosis grade, thereby demonstrating enhanced efficacy in distinguishing between the different grades.

7.
Front Immunol ; 14: 1206099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404829

RESUMO

Introduction: Osteoclasts play a crucial role in bone resorption, and impairment of their differentiation can have significant implications for bone density, especially in individuals with HIV who may be at risk of altered bone health. The present study aimed to investigate the effects of HIV infection on osteoclast differentiation using primary human monocyte-derived macrophages as precursors. The study focused on assessing the impact of HIV infection on cellular adhesion, cathepsin K expression, resorptive activity, cytokine production, expression of co-receptors, and transcriptional regulation of key factors involved in osteoclastogenesis. Methods: Primary human monocyte-derived macrophages were utilized as precursors for osteoclast differentiation. These precursors were infected with HIV, and the effects of different inoculum sizes and kinetics of viral replication were analyzed. Subsequently, osteoclastogenesis was evaluated by measuring cellular adhesion, cathepsin K expression, and resorptive activity. Furthermore, cytokine production was assessed by monitoring the production of IL-1ß, RANK-L, and osteoclasts. The expression levels of co-receptors CCR5, CD9, and CD81 were measured before and after infection with HIV. The transcriptional levels of key factors for osteoclastogenesis (RANK, NFATc1, and DC-STAMP) were examined following HIV infection. Results: Rapid, massive, and productive HIV infection severely impaired osteoclast differentiation, leading to compromised cellular adhesion, cathepsin K expression, and resorptive activity. HIV infection resulted in an earlier production of IL-1ß concurrent with RANK-L, thereby suppressing osteoclast production. Infection with a high inoculum of HIV increased the expression of the co-receptor CCR5, as well as the tetraspanins CD9 and CD81, which correlated with deficient osteoclastogenesis. Massive HIV infection of osteoclast precursors affected the transcriptional levels of key factors involved in osteoclastogenesis, including RANK, NFATc1, and DC-STAMP. Conclusions: The effects of HIV infection on osteoclast precursors were found to be dependent on the size of the inoculum and the kinetics of viral replication. These findings underscore the importance of understanding the underlying mechanisms to develop novel strategies for the prevention and treatment of bone disorders in individuals with HIV.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Osteoclastos/metabolismo , Catepsina K , HIV-1/metabolismo , Infecções por HIV/metabolismo , Fatores de Transcrição NFATC/metabolismo , Macrófagos/metabolismo , Proteínas de Transporte/metabolismo , Citocinas/metabolismo
8.
Front Microbiol ; 14: 1192832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283920

RESUMO

Introduction: Pulmonary and extrapulmonary manifestations have been described after infection with SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). The virus is known to persist in multiple organs due to its tropism for several tissues. However, previous reports were unable to provide definitive information about whether the virus is viable and transmissible. It has been hypothesized that the persisting reservoirs of SARS-CoV-2 in tissues could be one of the multiple potentially overlapping causes of long COVID. Methods: In the present study, we investigated autopsy materials obtained from 21 cadaveric donors with documented first infection or reinfection at the time of death. The cases studied included recipients of different formulations of COVID-19 vaccines. The aim was to find the presence of SARS-CoV-2 in the lungs, heart, liver, kidneys, and intestines. We used two technical approaches: the detection and quantification of viral genomic RNA using RT-qPCR, and virus infectivity using permissive in vitro Vero E6 culture. Results: All tissues analyzed showed the presence of SARS-CoV-2 genomic RNA but at dissimilar levels ranging from 1.01 × 102 copies/mL to 1.14 × 108 copies/mL, even among those cases who had been COVID-19 vaccinated. Importantly, different amounts of replication-competent virus were detected in the culture media from the studied tissues. The highest viral load were measured in the lung (≈1.4 × 106 copies/mL) and heart (≈1.9 × 106 copies/mL) samples. Additionally, based on partial Spike gene sequences, SARS-CoV-2 characterization revealed the presence of multiple Omicron sub-variants exhibiting a high level of nucleotide and amino acid identity among them. Discussion: These findings highlight that SARS-CoV-2 can spread to multiple tissue locations such as the lungs, heart, liver, kidneys, and intestines, both after primary infection and after reinfections with the Omicron variant, contributing to extending knowledge about the pathogenesis of acute infection and understanding the sequelae of clinical manifestations that are observed during post-acute COVID-19.

9.
Geroscience ; 44(5): 2447-2459, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36219280

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae that cause severe disease outbreaks in humans and also can infect and cause lethal disease across a broad range of mammalian species. Another related Henipavirus has been very recently identified in China in febrile patients with pneumonia, the Langya virus (LayV) of probable animal origin in shrews. NiV and HeV were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 90%. They are responsible for rare and sporadic outbreaks with no approved treatment modalities. NiV and HeV have wide cellular tropism that contributes to their high pathogenicity. From their natural hosts bats, different scenarios propitiate their spillover to pigs, horses, and humans. Henipavirus-associated respiratory disease arises from vasculitis and respiratory epithelial cell infection while the neuropathogenesis of Henipavirus infection is still not completely understood but appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection. This brief review offers an overview of direct and indirect mechanisms of HeV and NiV pathogenicity and their interaction with the human immune system, as well as the main viral strategies to subvert such responses.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Suínos , Cavalos , Saúde Pública , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Mamíferos
10.
Geroscience ; 44(4): 2095-2103, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35726117

RESUMO

The neglected and rare zoonotic disease caused by monkeypox virus (MPV) has recently spread widely, resulting in the largest known monkeypox outbreak outside of Africa, where it is endemic. MPV belongs to the Poxviridae family, genus Orthopoxvirus. At least two different clades have been identified, each having different fatality rates but recent cases are all phylogenetically related to the West African clade. MPV is transmitted directly by either person-to-person, -animal, or virus-contaminated fomite contact. The disease is often self-limited, and clinical symptoms include fever, skin lesions, and lymphadenopathies. At present, no deaths have been associated with the current outbreak. MPV DNA detection using molecular techniques is recommended for diagnosis. At least two approved drugs for antiviral therapy are available in the USA. Two different vaccines, including the vaccine used in the past for smallpox eradication and a new formulation more recently approved based on a live but non-replicating virus, are available that provide immunity to MPV. These and other clinical and public health considerations pertaining to the recent monkeypox outbreaks together with aspects of MPV biology are discussed in this article.


Assuntos
Animais , /epidemiologia , Vírus da Varíola dos Macacos/genética , Surtos de Doenças/prevenção & controle , Febre
11.
Geroscience ; 44(2): 547-565, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157210

RESUMO

SARS-CoV-2 is a recently identified coronavirus that causes the current pandemic disease known as COVID-19. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor, suggesting that the initial steps of SARS-CoV-2 infection may have an impact on the renin-angiotensin system (RAS). Several processes are influenced by RAS in the brain. The neurological symptoms observed in COVID-19 patients, including reduced olfaction, meningitis, ischemic stroke, cerebral thrombosis, and delirium, could be associated with RAS imbalance. In this review, we focus on the potential role of disturbances in the RAS as a cause for central nervous system sequelae of SARS-CoV-2 infection in elderly patients.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Sistema Nervoso Central/metabolismo , Humanos , Peptidil Dipeptidase A , Sistema Renina-Angiotensina/fisiologia
12.
World J Gastroenterol ; 28(48): 6875-6887, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36632318

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hepatic involvement is common in SARS-CoV-2-infected individuals. It is currently accepted that the direct and indirect hepatic effects of SARS-CoV-2 infection play a significant role in COVID-19. In individuals with pre-existing infectious and non-infectious liver disease, who are at a remarkably higher risk of developing severe COVID-19 and death, this pathology is most medically relevant. This review emphasizes the current pathways regarded as contributing to the gastrointestinal and hepatic ailments linked to COVID-19-infected patients due to an imbalanced interaction among the liver, systemic inflammation, disrupted coagulation, and the lung.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/patologia , Fígado/patologia , Inflamação/patologia , Tropismo
14.
Front Cell Infect Microbiol ; 11: 607610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987105

RESUMO

Adhesion to host cells is a key step for successful infection of many bacterial pathogens and may define tropism to different host tissues. To do so, bacteria display adhesins on their surfaces. Brucella is an intracellular pathogen capable of proliferating in a wide variety of cell types. It has been described that BmaC, a large protein that belongs to the classical (type Va) autotransporter family, is required for efficient adhesion of Brucella suis strain 1330 to epithelial cells and fibronectin. Here we show that B. suis 1330 harbors two other type Va autotransporters (BmaA and BmaB), which, although much smaller, share significant sequence similarities with BmaC and contain the essential domains to mediate proper protein translocation to the bacterial surface. Gain and loss of function studies indicated that BmaA, BmaB, and BmaC contribute, to a greater or lesser degree, to adhesion of B. suis 1330 to different cells such as synovial fibroblasts, osteoblasts, trophoblasts, and polarized epithelial cells as well as to extracellular matrix components. It was previously shown that BmaC localizes to a single bacterial pole. Interestingly, we observed here that, similar to BmaC, the BmaB adhesin is localized mostly at a single cell pole, reinforcing the hypothesis that Brucella displays an adhesive pole. Although Brucella species have strikingly similar genomes, they clearly differ in their host preferences. Mainly, the differences identified between species appear to be at loci encoding surface proteins. A careful in silico analysis of the putative type Va autotransporter orthologues from several Brucella strains showed that the bmaB locus from Brucella abortus and both, the bmaA and bmaC loci from Brucella melitensis are pseudogenes in all strains analyzed. Results reported here evidence that all three autotransporters play a role in the adhesion properties of B. suis 1330. However, Brucella spp. exhibit extensive variations in the repertoire of functional adhesins of the classical autotransporter family that can be displayed on the bacterial surface, making them an interesting target for future studies on host preference and tropism.


Assuntos
Brucella suis , Sistemas de Secreção Tipo V , Adesinas Bacterianas/genética , Adesivos , Brucella abortus , Brucella suis/genética , Sistemas de Secreção Tipo V/genética
15.
Cytokine Growth Factor Rev ; 58: 55-65, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33608189

RESUMO

SARS-CoV-2 is a recently identified coronavirus accountable for the current pandemic disease known as COVID-19. Different patterns of disease progression infer a diverse host immune response, with interferon (IFN) being pivotal. IFN-I and III are produced and released by virus-infected cells during the interplay with SARS-CoV-2, thus establishing an antiviral state in target cells. However, the efficacy of IFN and its role in the possible outcomes of the disease are not yet defined, as it is influenced both by factors inherent to the virus and to the host. The virus exhibits multiple strategies to counteract the innate immune response, including those shared by SARS-CoV and MERS-CoV and other novel ones. Inborn errors in the host may affect IFN-related effector proteins or decrease its levels in plasma upon neutralization by preexistent autoantibodies. This battle between the IFN response triggered upon SARS-CoV-2 infection, its magnitude and timing, and the efficacy of its antiviral tools in dispute against the viral evasion strategies together with the genetic factors of the host, generate a scenario whose fate contributes to defining the severity of COVID-19.


Assuntos
Interações Hospedeiro-Patógeno , Interferon Tipo I/fisiologia , Interferons/fisiologia , SARS-CoV-2/imunologia , Proteínas Virais/fisiologia , Animais , Antivirais/metabolismo , COVID-19/genética , COVID-19/imunologia , COVID-19/patologia , Doenças Genéticas Inatas/complicações , Doenças Genéticas Inatas/imunologia , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunidade Inata/genética , Interferon Tipo I/antagonistas & inibidores , Interferons/antagonistas & inibidores , Pandemias , SARS-CoV-2/patogenicidade , Interferon lambda
17.
Heliyon ; 6(12): e05679, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33319116

RESUMO

HIV-1 is characterized by its ability to mutate and recombine even at polymerase (pol) gene. However, pol-gene diversity is limited due to functional constraints. The aim of this study was to characterize longitudinally, by next-generation sequencing (NGS), HIV-1 variants based on pol-gene sequences, at intra- and inter-host level, from acute/early to chronic stages of infection, in the absence of antiretroviral therapy. Ten men who have sex with men (MSM) were recruited during primary infection and yearly followed for five years. Even after a maximum of a five-year follow-up period, the phylogenetic analysis of HIV-1 pol-gene sequences showed a host-defined structured pattern, with a predominance of purifying selection forces during the follow-up. MSM had been acutely infected by different HIV-1 variants mainly ascribed to pure subtype B, or BF recombinant variants and showed different genetic mosaicism patterns that last until the chronic stage, representing a major challenge for prevention strategies.

18.
Front Microbiol ; 11: 563320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193149

RESUMO

Introduction: Trypanosoma cruzi is an intracellular protozoa and etiological agent that causes Chagas disease. Its presence among the immunocompromised HIV-infected individuals is relevant worldwide because of its impact on the central nervous system (CNS) causing severe meningoencephalitis. The HIV infection of astrocytes - the most abundant cells in the brain, where the parasite can also be hosted - being able to modify reactive oxygen species (ROS) could influence the parasite growth. In such interaction, extracellular vesicles (EVs) shed from trypomastigotes may alter the surrounding environment including its pro-oxidant status. Methods: We evaluated the interplay between both pathogens in human astrocytes and its consequences on the host cell pro-oxidant condition self-propitiated by the parasite - using its EVs - or by HIV infection. For this goal, we challenged cultured human primary astrocytes with both pathogens and the efficiency of infection and multiplication were measured by microscopy and flow cytometry and parasite DNA quantification. Mitochondrial and cellular ROS levels were measured by flow cytometry in the presence or not of scavengers with a concomitant evaluation of the cellular apoptosis level. Results: We observed that increased mitochondrial and cellular ROS production boosted significantly T. cruzi infection and multiplication in astrocytes. Such oxidative condition was promoted by free trypomastigotes-derived EVs as well as by HIV infection. Conclusions: The pathogenesis of the HIV-T. cruzi coinfection in astrocytes leads to an oxidative misbalance as a key mechanism, which exacerbates ROS generation and promotes positive feedback to parasite growth in the CNS.

19.
Arch Virol ; 165(12): 2915-2919, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32978684

RESUMO

Human immunodeficiency virus type 1 (HIV) primary drug resistance mutations (DRMs) influence the long-term therapeutic effects of antiretroviral treatment (ART). Drug-resistance genotyping based on polymerase gene sequences obtained by next-generation sequencing (NGS) was performed using samples from 10 ART-naïve HIV-infected men who have sex with men (MSM; P1-P10) from the acute/early to chronic stage of infection. Three of the 10 subjects exhibited the presence of major (abundance, ≥ 20%) viral populations carrying DRM at early/acute stage that later, at the chronic stage, dropped drastically (V106M) or remained highly abundant (E138A). Four individuals exhibited additional DRMs (M46I/L; I47A; I54M, L100V) as HIV minority populations (abundance, 2-20%) that emerged during the chronic stage but ephemerally.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética , Infecções por HIV/virologia , HIV-1/genética , Mutação , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Homossexualidade Masculina , Humanos , Masculino , Filogenia , Minorias Sexuais e de Gênero , Carga Viral
20.
Pathogens ; 9(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867217

RESUMO

Central nervous system invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. A common feature associated with this pathology is blood-brain barrier (BBB) activation. However, the underlying mechanisms involved with such BBB activation remain unknown. The aim of this work was to investigate the role of Brucella abortus-stimulated platelets on human brain microvascular endothelial cell (HBMEC) activation. Platelets enhanced HBMEC activation in response to B. abortus infection. Furthermore, supernatants from B. abortus-stimulated platelets also activated brain endothelial cells, inducing increased secretion of IL-6, IL-8, CCL-2 as well as ICAM-1 and CD40 upregulation on HBMEC compared with supernatants from unstimulated platelets. Outer membrane protein 19, a B. abortus lipoprotein, recapitulated B. abortus-mediated activation of HBMECs by platelets. In addition, supernatants from B. abortus-activated platelets promoted transendothelial migration of neutrophils and monocytes. Finally, using a pharmacological inhibitor, we demonstrated that the Erk1/2 pathway is involved in the endothelial activation induced by B. abortus-stimulated platelets and also in transendothelial migration of neutrophils. These results describe a mechanism whereby B. abortus-stimulated platelets induce endothelial cell activation, promoting neutrophils and monocytes to traverse the BBB probably contributing to the inflammatory pathology of neurobrucellosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...